Details

Carbon Allotropes and Composites


Carbon Allotropes and Composites

Materials for Environment Protection and Remediation
1. Aufl.

von: Chandrabhan Verma, Chaudhery Mustansar Hussain

173,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 18.05.2023
ISBN/EAN: 9781394167906
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>CARBON ALLOTROPES and COMPOSITES</b> <p><b>The book discusses the most recent developments and trends in the use of carbon allotropes and their composites for environmental restoration and protection including synthesis, characterization and applications.</b> <p>Due to their huge surface area and numerous other distinguishing characteristics, nanostructure materials are widely used in a variety of applications. The production of substrates for better environmental protection and cleanup has been prompted by these qualities. They offer a superior surface for the adsorption of impurities and pollutants that contaminate industrial eff luents, wastewater, air, and soil. These all include a variety of harmful environmental substances such as toxic metals, phenolic compounds, dyes, and other substances that must be treated appropriately before being released into the environment. <p>Composites made of highly efficient and relatively noble carbon allotropes are attracting significant attention for environmental protection and restoration. The use of carbon allotropes offers many benefits, including low cost, low toxicity, simple manufacture, and high efficiency. Therefore, they are ideal replacements for previously established materials. <i>Carbon Allotropes and Composites </i>is one of the first books on carbon allotropes and their composites in environmental protection and remediation, and features a description of CO2 capturing capability. <p><b>Audience</b> <p>The book is designed for a broad audience working in the fields of materials science and engineering, nanotechnology, energy, environmental chemistry, environmental science, etc.
<p>Preface xv</p> <p><b>1 Preparation of Carbon Allotropes Using Different Methods 1<br /> </b><i>Omar Dagdag, Rajesh Haldhar, Seong-Cheol Kim, Elyor Berdimurodov, Sheerin Masroor, Ekemini D. Akpan and Eno E. Ebenso</i></p> <p>Abbreviations 2</p> <p>1.1 Introduction 2</p> <p>1.2 Synthesis Methods 3</p> <p>1.2.1 Synthesis of CNTs 3</p> <p>1.2.1.1 Arc Discharge Method 3</p> <p>1.2.1.2 Laser Ablation Method 4</p> <p>1.2.1.3 Chemical Vapor Deposition (CVD) 5</p> <p>1.2.1.4 Plasma-Enhanced CVD (PE-CVD) 7</p> <p>1.2.2 Synthesis of CQDs 7</p> <p>1.2.2.1 Arc Discharge 8</p> <p>1.2.2.2 Laser Ablation 9</p> <p>1.2.2.3 Acidic Oxidation 9</p> <p>1.2.2.4 Combustion/Thermal Routes 10</p> <p>1.2.2.5 Microwave Pyrolysis 10</p> <p>1.2.2.6 Electrochemistry Method 10</p> <p>1.2.2.7 Hydrothermal/Solvothermal Synthesis 10</p> <p>1.3 Conclusions 11</p> <p>References 11</p> <p><b>2 Carbon Allotrope Composites: Basics, Properties, and Applications 17<br /> </b><i>Sheerin Masroor</i></p> <p>2.1 Introduction 17</p> <p>2.2 Allotropes of Carbon 18</p> <p>2.3 Basics of Carbon Allotrope Composites and Their Properties 22</p> <p>2.4 Composites of Graphite or Graphite Oxide (GO) 22</p> <p>2.4.1 Applications of Graphite Oxide 24</p> <p>2.5 Composites of Graphene 24</p> <p>2.5.1 Applications of Graphene Oxide 24</p> <p>2.6 Composite of Graphite-Carbon Nanotube (Gr-CNT)/ Polythene or Silicon 25</p> <p>2.6.1 Applications of Graphite-Carbon Nanotube (Gr-CNT)/ Polythene or Silicon 26</p> <p>2.7 Graphene (or Graphene Oxide)–Carbon Nanofiber (CNF) Composites 26</p> <p>2.7.1 Applications of CNF Composites 26</p> <p>2.8 Graphene-Fullerene Composites 26</p> <p>2.8.1 Applications of Graphene-Fullerene Composites 26</p> <p>2.9 Conclusion 27</p> <p>References 27</p> <p><b>3 Activation of Carbon Allotropes Through Covalent and Noncovalent Functionalization: Attempts in Modifying Properties for Enhanced Performance 31<br /> </b><i>Richika Ganjoo, Shveta Sharma and Ashish Kumar</i></p> <p>3.1 Introduction 32</p> <p>3.1.1 Carbon Allotropes: Fundamentals and Properties 32</p> <p>3.1.1.1 Graphite 34</p> <p>3.1.1.2 Diamond 34</p> <p>3.1.1.3 Graphene 35</p> <p>3.1.1.4 Activated Carbon 36</p> <p>3.1.1.5 Carbon Nanotubes and Fullerene 36</p> <p>3.1.2 Functionalization of Carbon Allotropes: Synthesis and Characterization 37</p> <p>3.1.2.1 Covalent Functionalization of Carbon Allotropes: Synthesis and Characterization 38</p> <p>3.1.2.2 Noncovalent Functionalization of Carbon Allotropes: Synthesis and Characterization 39</p> <p>3.2 Applications of Functionalized Carbon Allotropes 42</p> <p>3.2.1 Biomedical 42</p> <p>3.2.2 Waste Treatment 43</p> <p>3.2.3 Pollutants Decontamination 43</p> <p>3.2.4 Anticorrosive 44</p> <p>3.2.5 Tribological 44</p> <p>3.2.6 Catalytic 45</p> <p>3.2.7 Reinforced Materials 46</p> <p>3.3 Conclusions and Future Directions 47</p> <p>References 47</p> <p><b>4 Carbon Allotropes in Lead Removal 51<br /> </b><i>Shippi Dewangan, Amarpreet K. Bhatia and Nishtha Vaidya</i></p> <p>4.1 Introduction 52</p> <p>4.2 Carbon Nanomaterials (CNMs) 55</p> <p>4.3 Dimension-Based Types of Carbon Nanomaterials 55</p> <p>4.4 Purification of Water Using Fullerenes 56</p> <p>4.5 Application of Graphene and Its Derivatives in Water Purification 57</p> <p>4.6 Application of Carbon Nanotubes (CNTs) in Water Purification 58</p> <p>4.7 Conclusion 66</p> <p>References 67</p> <p><b>5 Carbon Allotropes in Nickel Removal 73<br /> </b><i>Amarpreet K. Bhatia, Nishtha Vaidya and Shippi Dewangan</i></p> <p>5.1 Introduction 74</p> <p>5.2 Carbon and Its Allotropes: As Remediation Technology for Ni 76</p> <p>5.2.1 Nanotubes Based on Carbon 77</p> <p>5.2.1.1 Overview 77</p> <p>5.2.1.2 Features of CNTs 77</p> <p>5.2.2 Fullerenes 80</p> <p>5.2.3 Graphene 80</p> <p>5.2.3.1 Overview 80</p> <p>5.2.3.2 Properties 82</p> <p>5.3 Removal of Ni in Wastewater by Use of Carbon Allotropes 83</p> <p>5.3.1 Carbon Nanotubes for Ni Adsorption From Aqueous Solutions 83</p> <p>5.3.2 Ni Adsorption From Aqueous Solutions on Composite Material of MWCNTs 84</p> <p>5.3.3 GR and GO-Based Adsorbents for Removal of Ni 84</p> <p>5.4 Conclusion 88</p> <p>References 88</p> <p><b>6 Molybdenum-Modified Carbon Allotropes in Wastewater Treatment 91<br /> </b><i>Madhur Babu Singh, Anirudh Pratap Singh Raman, Prashant Singh, Pallavi Jain and Kamlesh Kumari</i></p> <p>6.1 Introduction 92</p> <p>6.2 Carbon-Based Allotropes 93</p> <p>6.2.1 Graphene 93</p> <p>6.2.2 Graphite 93</p> <p>6.2.3 Carbon Nanotubes 95</p> <p>6.2.4 Glassy Carbon (GC) 95</p> <p>6.3 Molybdenum Disulfide 96</p> <p>6.3.1 Synthesis of MoS 2 96</p> <p>6.3.2 Physical Methods 97</p> <p>6.3.3 Chemical Methods 98</p> <p>6.3.4 Properties 99</p> <p>6.4 Application of MoS 2 100</p> <p>6.4.1 Dye-Sensitized Solar Cells (DSSCs) 101</p> <p>6.4.2 Catalyst 101</p> <p>6.4.3 Desalination 101</p> <p>6.4.4 Lubrication 102</p> <p>6.4.5 Sensor 103</p> <p>6.4.6 Electroanalytical 103</p> <p>6.4.7 Biomedical 105</p> <p>6.5 Molybdenum-Modified Carbon Allotropes in Wastewater Treatment 105</p> <p>6.6 Conclusion 107</p> <p>References 108</p> <p><b>7 Carbon Allotropes in Other Metals (Cu, Zn, Fe etc.) Removal 113<br /> </b><i>Manoj Kumar Banjare, Kamalakanta Behera and Ramesh Kumar Banjare</i></p> <p>7.1 Introduction 114</p> <p>7.2 Carbon-Allotropes: Synthesis Methods, Applications and Future Perspectives 115</p> <p>7.3 Reaffirmations of Heavy Metal Contaminations in Water and Their Toxic Effects 116</p> <p>7.3.1 Copper 116</p> <p>7.3.2 Zinc 116</p> <p>7.3.3 Lead 119</p> <p>7.3.4 Cadmium 119</p> <p>7.3.5 Arsenic 119</p> <p>7.4 Technology is Used to Treat Heavy Ions of Metal 119</p> <p>7.4.1 Chemical Precipitation 119</p> <p>7.4.2 Ion-Exchange 121</p> <p>7.4.3 Adsorption 122</p> <p>7.4.4 Membrane Filtration 123</p> <p>7.4.5 Electrodialysis 124</p> <p>7.4.6 Flotation 125</p> <p>7.4.7 Electrochemical Treatment 126</p> <p>7.4.8 Electroflotation 126</p> <p>7.4.9 Coagulation and Flocculation 142</p> <p>7.5 Factors Influencing How Heavy Metal Ions Adhere to CNTs 142</p> <p>7.5.1 pH 142</p> <p>7.5.2 Ionic Strength 143</p> <p>7.5.3 CNT Dosage 143</p> <p>7.5.4 Contact Time 143</p> <p>7.5.5 Temperature 143</p> <p>7.5.6 Thermodynamic Variables 143</p> <p>7.5.7 CNT Regeneration 144</p> <p>7.5.8 Isotherm Equation 144</p> <p>7.5.9 Current Issues and the Need for Additional Study 144</p> <p>7.6 Conclusions 144</p> <p>Acknowledgments 145</p> <p>References 145</p> <p><b>8 Carbon Allotropes in Phenolic Compounds Removal 155<br /> </b><i>Manikandan Krishnamurthy and Meenakshisundaram Swaminathan</i></p> <p>8.1 Introduction 156</p> <p>8.2 Carbon Materials in Phenol Removal 159</p> <p>8.2.1 Activated Carbon 159</p> <p>8.2.2 Graphene 161</p> <p>8.2.3 Carbon Nanotubes 162</p> <p>8.2.4 Graphene Oxide and Reduced Graphene Oxide 163</p> <p>8.2.5 Graphitic Carbon Nitride 164</p> <p>8.2.6 Carbon Materials in the Biodegradation of Phenols 165</p> <p>8.3 Conclusions 166</p> <p>References 166</p> <p><b>9 Carbon Allotropes in Carbon Dioxide Capturing 173<br /> </b><i>Elyor Berdimurodov, Khasan Berdimuradov, Ilyos Eliboyev, Abduvali Kholikov, Khamdam Akbarov, Nuritdin Kattaev, Dakeshwar Kumar Verma and Omar Dagdag</i></p> <p>9.1 Introduction 174</p> <p>9.1.1 Importance of Carbon Allotropes in Carbon Dioxide Capturing 174</p> <p>9.2 Main Part 175</p> <p>9.2.1 Polymer-Based Carbon Allotropes in Carbon Dioxide Capturing 175</p> <p>9.2.2 Graphene-Aerogels-Based Carbon Allotropes in Carbon Dioxide Capturing 179</p> <p>9.3 Functionalized Graphene-Based Carbon Allotropes in Carbon Dioxide Capturing 183</p> <p>9.4 Conclusions 187</p> <p>References 187</p> <p><b>10 Carbon Allotropes in Air Purification 191<br /> </b><i>Nishtha Vaidya, Amarpreet K. Bhatia and Shippi Dewangan</i></p> <p>10.1 Introduction 192</p> <p>10.2 Historical and Chemical Properties of Some Designated Carbon-Based Allotropes 194</p> <p>10.3 Structure and Characteristics of Carbon Allotropes 194</p> <p>10.4 Uses of Carbon Nanotube Filters for Removal of Air Pollutants 200</p> <p>10.5 Physicochemical Characterization of CNTs 203</p> <p>10.6 TiO 2 Nanofibers in a Simulated Air Purifier Under Visible Light Irradiation 204</p> <p>10.7 Poly (Vinyl Pyrrolidone) (PVP) 204</p> <p>10.8 VOCs 205</p> <p>10.9 Heavy Metals 205</p> <p>10.10 Particulate Matter (PM) 207</p> <p>10.11 Techniques to Remove Air Pollutants and Improve Air Treatment Efficiency 208</p> <p>10.12 Removal of NOX by Photochemical Oxidation Process 210</p> <p>10.13 Chemically Adapted Nano-TiO 2 211</p> <p>10.14 Alternative Nanoparticulated System 212</p> <p>10.15 Photodegradation of NOX Evaluated for the ZnO-Based Systems 212</p> <p>10.16 Synthesis and Applications of Carbon Nanotubes 213</p> <p>10.17 Mechanism of Technologies 215</p> <p>10.18 Conclusion 221</p> <p>References 222</p> <p><b>11 Carbon Allotropes in Waste Decomposition and Management 229<br /> </b><i>Swati Sahu, Gajendra Singh Rathore and Sanjay Tiwari</i></p> <p>11.1 Introduction 230</p> <p>11.2 Management Methods for Waste 230</p> <p>11.2.1 Landfilling 232</p> <p>11.2.2 Incineration 232</p> <p>11.2.3 Mechanical Recycling 232</p> <p>11.2.3.1 Downcycling Method 233</p> <p>11.2.3.2 Upcycling Method 233</p> <p>11.3 Process of Pyrolysis: Waste Management to the Synthesis of Carbon Allotropes 233</p> <p>11.4 Synthesis Methods to Produce Carbon-Based Materials From Waste Materials 235</p> <p>11.4.1 Catalytic Pyrolysis 235</p> <p>11.4.2 Batch Pyrolysis-Catalysis 237</p> <p>11.4.3 CVD Method 237</p> <p>11.4.4 Pyrolysis-Deposition Followed by CVD 238</p> <p>11.4.5 Thermal Decomposition 238</p> <p>11.4.6 Activation Techniques 239</p> <p>11.4.6.1 Physical Activation Technique 239</p> <p>11.4.6.2 Chemical Activation Technique 240</p> <p>11.5 Use of Waste Materials for the Development of Carbon Allotropes 240</p> <p>11.5.1 Synthesis of CNTs Using Waste Materials 240</p> <p>11.5.2 Synthesis of Graphene Using Waste Materials 243</p> <p>11.6 Applications for Carbon-Based Materials 245</p> <p>11.6.1 CNTs 245</p> <p>11.6.2 Graphene 247</p> <p>11.6.3 Activated Carbon 247</p> <p>11.7 Conclusions 248</p> <p>References 249</p> <p><b>12 Carbon Allotropes in a Sustainable Environment 257<br /> </b><i>Farhat A. Ansari</i></p> <p>12.1 Introduction 258</p> <p>12.2 Functionalization of Carbon Allotropes 258</p> <p>12.2.1 Covalent Functionalization 258</p> <p>12.2.2 Noncovalent Functionalization 260</p> <p>12.3 Developments of Carbon Allotropes and Their Applications 261</p> <p>12.4 Carbon Allotropes in Sustainable Environment 262</p> <p>12.5 Carbon Allotropes Purification Process in the Treatment of Wastewater 263</p> <p>12.5.1 Fullerenes 264</p> <p>12.5.2 Bucky Paper Membrane (BP) 264</p> <p>12.5.3 Carbon Nanotubes (CNTs) 265</p> <p>12.5.3.1 CNT Adsorption Mechanism 265</p> <p>12.5.3.2 CNTs Ozone Method 266</p> <p>12.5.3.3 CNTs-Fenton-Like Systems 267</p> <p>12.5.3.4 CNTs-Persulfates Systems 268</p> <p>12.5.3.5 CNTs-Ferrate/Permanganate Systems 269</p> <p>12.5.4 Graphene 269</p> <p>12.6 Removal of Various Pollutants 270</p> <p>12.6.1 Arsenic 270</p> <p>12.6.2 Drugs and Pharmaceuticals 274</p> <p>12.6.3 Heavy Metals 279</p> <p>12.6.4 Pesticides and Other Pest Controllers 280</p> <p>12.6.5 Fluoride 285</p> <p>12.7 Carbon Dioxide (CO 2) Adsorption 287</p> <p>12.8 Conclusion and Future Perspective 290</p> <p>References 291</p> <p><b>13 Carbonaceous Catalysts for Pollutant Degradation 303<br /> </b><i>Poonam Kaswan, Santimoy Khilari, Ankur Srivastava, Girijesh Kumar, Pratap K. Chhotaray, Mrituanjay D. Pandey and Kamalakanta Behera</i></p> <p>13.1 Introduction 304</p> <p>13.2 Strategies to Develop Carbon-Based Material 306</p> <p>13.3 Advantages of Carbon-Based Metal Nanocomposites 308</p> <p>13.4 Methods for the Development of Carbon-Based Nanocomposites 312</p> <p>13.5 Carbon-Based Photocatalyst 313</p> <p>13.5.1 Fullerene (C 60) 314</p> <p>13.5.2 Carbon Nanotubes 315</p> <p>13.5.3 Graphene 315</p> <p>13.5.4 Graphitic Carbon Nitride (g-C 3 N 4) 317</p> <p>13.5.5 Diamond 318</p> <p>13.6 Applications 319</p> <p>13.6.1 Dye Degradation 319</p> <p>13.6.2 Organic Transformation 321</p> <p>13.6.3 NOx Removal 322</p> <p>13.7 Factors Affecting Degradation 322</p> <p>13.7.1 Radiation 322</p> <p>13.7.2 Exfoliation 322</p> <p>13.7.3 pH 323</p> <p>13.7.4 Reaction Condition 323</p> <p>13.7.5 Carbonaceous Material 323</p> <p>13.8 Challenges 323</p> <p>13.9 Conclusion and Future Aspects 324</p> <p>Acknowledgments 325</p> <p>Abbreviations 325</p> <p>References 325</p> <p><b>14 Importance and Contribution of Carbon Allotropes in a Green and Sustainable Environment 337<br /> </b><i>Ajay K. Singh</i></p> <p>14.1 Introduction 338</p> <p>14.1.1 Basic Aspects of Sustainability 338</p> <p>14.2 Changes Being Observed in Nature and Their Effect on Our Planet 339</p> <p>14.2.1 Water, Air, and Effect on Energy Generation 339</p> <p>14.2.2 Air Quality 339</p> <p>14.2.3 Pollution (Air/Water) 340</p> <p>14.2.4 Carbon Footprint 341</p> <p>14.2.5 Green House Effect 342</p> <p>14.2.6 Ozone Layer Depletion 342</p> <p>14.2.7 Temperature 343</p> <p>14.2.8 Effect on Farm Products 343</p> <p>14.2.9 Plastic 345</p> <p>14.2.10 Radiation Pollution 346</p> <p>14.3 Advantages of Green House Effect 346</p> <p>14.3.1 Supports and Promotes Life 346</p> <p>14.3.2 Photosynthesis 346</p> <p>14.4 Industrial Sustainability 347</p> <p>14.5 Corrosion and Its Implications 349</p> <p>14.5.1 Corrosion 349</p> <p>14.5.2 Corrosion and Sustainable Environment 350</p> <p>14.5.3 Industrial Operations and Environmental Sustainability 352</p> <p>14.5.4 Industrial Machinery Corrosion and Its Implications 353</p> <p>14.6 Corrosion Control and Material Properties 355</p> <p>14.6.1 Mechanical Properties 355</p> <p>14.6.2 Corrosion Resistant Materials 358</p> <p>14.6.3 Design Consideration 358</p> <p>14.6.4 Erosion Corrosion 358</p> <p>14.6.5 Cathodic/Anodic Protection 360</p> <p>14.6.6 Corrosion Inhibitors 361</p> <p>14.6.7 Nanomaterials 362</p> <p>14.7 Carbon Allotropes and Corrosion Inhibition 363</p> <p>14.7.1 Carbon Dots (CD) or Carbon Quantum Dots (cqd) 364</p> <p>14.7.2 Buckminster Fullerene C 60 366</p> <p>14.7.3 Graphene 369</p> <p>14.7.4 Carbon Nanotubes (CNTs) 373</p> <p>14.8 Conclusion 377</p> <p>14.8.1 Commercialization 378</p> <p>14.8.2 Synergy in Mixed Nanohybrids 379</p> <p>References 379</p> <p>Index 383</p>
<p><b>Chandrabhan Verma, PhD, </b>works at the Interdisciplinary Center for Research in Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia. He obtained his PhD in material science/chemistry at the Indian Institute of Technology, Varanasi, India. He is the Associate Editor-in- Chief of the <i>Organic Chemistry Plus Journal</i>. He has published many articles in international journals and has over 9000 citations. Dr. Verma has received several awards for his academic achievements. <p><b>Chaudhery Mustansar Hussain, PhD</b>, is an adjunct professor and director of laboratories in the Department of Chemistry & Environmental Science at the New Jersey Institute of Technology (NJIT), Newark, New Jersey, United States. His research is focused on the applications of nanotechnology and advanced materials, environmental management, analytical chemistry, and other various industries. Dr. Hussain is the author of numerous papers in peer-reviewed journals, as well as a prolific author and editor of around a hundred books.
<p><b>The book discusses the most recent developments and trends in the use of carbon allotropes and their composites for environmental restoration and protection including synthesis, characterization and applications.</b> <p>Due to their huge surface area and numerous other distinguishing characteristics, nanostructure materials are widely used in a variety of applications. The production of substrates for better environmental protection and cleanup has been prompted by these qualities. They offer a superior surface for the adsorption of impurities and pollutants that contaminate industrial eff luents, wastewater, air, and soil. These all include a variety of harmful environmental substances such as toxic metals, phenolic compounds, dyes, and other substances that must be treated appropriately before being released into the environment. <p>Composites made of highly efficient and relatively noble carbon allotropes are attracting significant attention for environmental protection and restoration. The use of carbon allotropes offers many benefits, including low cost, low toxicity, simple manufacture, and high efficiency. Therefore, they are ideal replacements for previously established materials. <i>Carbon Allotropes and Composites </i>is one of the first books on carbon allotropes and their composites in environmental protection and remediation, and features a description of CO2 capturing capability. <p><b>Audience</b> <p>The book is designed for a broad audience working in the fields of materials science and engineering, nanotechnology, energy, environmental chemistry, environmental science, etc.

Diese Produkte könnten Sie auch interessieren:

The Vicuña
The Vicuña
von: Iain Gordon, Jane C. Wheeler, Hugo Yacobaccio, Jerry Laker, Marcelo Cassini, Mariela Borgnia, Yanina Arzamendia, Verónica Benítez, Bibiana Vilá, Cristian Bonacic, Jessica Gimpel, Pete Goddard, Desmond McNeill, Gabriela Lichtenstein, Renaudeau d' Arc Nadine, Kristi Anne Stølen, Javier García Gomez, Ana Wawrzyk
PDF ebook
96,29 €
Saving Biological Diversity
Saving Biological Diversity
von: Robert A. Askins, Glenn D. Dreyer, Gerald R. Visgilio, Diana M. Whitelaw
PDF ebook
96,29 €
Martens and Fishers (Martes) in Human-Altered Environments
Martens and Fishers (Martes) in Human-Altered Environments
von: Daniel J. Harrison, Angela K. Fuller, Gilbert Proulx
PDF ebook
149,79 €