Details

Magnonic Devices


Magnonic Devices

Numerical Modelling and Micromagnetic Simulation Approach
SpringerBriefs in Materials

von: C. S. Nikhil Kumar

48,14 €

Verlag: Springer
Format: PDF
Veröffentl.: 24.01.2023
ISBN/EAN: 9783031226656
Sprache: englisch

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

This book briefly looks at numerical modeling and micromagnetic simulation results of magnonic crystals, which are periodically modulated magnonic devices regarded as the magnetic counterpart of photonic crystals with spin waves acting as the information carrier. Since the wavelength of the spin wave is several orders of magnitude shorter than that of electromagnetic waves of the same frequency, magnonic crystals are promising candidates for miniaturization, especially in the fields of data storage and processing. The book begins by describing the dispersion relation of dipolar spin waves in a magnonic curved waveguide, solving Walker's equation in cylindrical coordinates, and then calculating the dispersion of exchange spin waves using perturbation theory. It describes simulated nano-contact-driven spin wave excitations in a magnonic cavity, featuring a design of an antidot magnonic crystal around the nano-contact, with the frequency of the spin wave mode generated lying within the band gap of the magnonic crystal. The proposed device behaves as a SWASER—Spin Wave Amplification by the Stimulated Emission of Radiation. This book will find interest among researchers and practitioners interested in the modeling, simulation, and design of novel magnonic devices.
Introduction.- Backward Volume Spin Waves in a Rectangular Geometry.- Magnetostatic Waves in Magnonic Crystals: A PWM Approach.- Field Localization in Striped Magnonic Crystal Waveguide.- Walkers Solution for Curved Magnonic Waveguide and Resonant Modes in Magnonic Ring.- Nano-contact Driven Spin Wave Excitations in Magnonic Cavity.- Magnetic Field Feedback Oscillator: A Micromagnetic Study.
Features numerical modeling and micromagnetic simulation results of magnonic crystal devices Introduces the concept of a SWASER device—the spin wave counterpart of a LASER Is interesting for researchers and practitioners working on design and modeling of new magnonic devices

Diese Produkte könnten Sie auch interessieren:

Introduction to Focused Ion Beams
Introduction to Focused Ion Beams
von: Lucille A. Giannuzzi, Lucille A. North Carolina State University
PDF ebook
128,39 €
Advanced Magnetic Nanostructures
Advanced Magnetic Nanostructures
von: D.J. Sellmyer, Ralph Skomski
PDF ebook
149,79 €
High Thermal Conductivity Materials
High Thermal Conductivity Materials
von: Subhash L. Shinde, Jitendra Goela
PDF ebook
149,79 €