cover

Contents

Cover

Related Titles

Title Page

Copyright

Preface

List of Contributors

Chapter 1: Carbon Nanostructures: Covalent and Macromolecular Chemistry

1.1 Introduction

1.2 Fullerene-Containing Polymers

1.3 Carbon Nanotubes

1.4 Graphenes

1.5 Summary and Conclusions

Acknowledgments

References

Chapter 2: Hydrogen-Bonded Fullerene Assemblies

2.1 Introduction

2.2 Hydrogen-Bonded Fullerene-Based Supramolecular Structures

2.3 Hydrogen-Bonded Fullerene-Based Donor–Acceptor Structures

2.4 Applications

Acknowledgments

References

Chapter 3: Receptors for Pristine Fullerenes Based on Concave–Convex π–π Interactions

3.1 Introduction

3.2 Fullerene Receptors Based on Traditional Hosts

3.3 Hydrocarbon Receptors

3.4 Receptors Bearing a Curved Conjugated System

3.5 Conclusions

References

Chapter 4: Cooperative Effects in the Self-Assembly of Fullerene Donor Ensembles

4.1 Introduction

4.2 Allosteric Cooperativity

4.3 Chelate Cooperativity

4.4 Conclusions

4.5 Experimental Details

Acknowledgments

References

Chapter 5: Fullerene-Containing Rotaxanes and Catenanes

5.1 Introduction

5.2 Fullerene Rotaxanes and Catenanes

5.3 Conclusions

References

Chapter 6: Biomimetic Motifs Toward the Construction of Artificial Reaction Centers

6.1 Introduction

6.2 Supramolecular Architectures for Solar Energy Conversion

6.3 Outlook

References

Chapter 7: Supramolecular Chemistry of Fullerene-Containing Micelles and Gels

7.1 Introduction

7.2 Solubilization of Pristine C60 in Surfactant Assemblies

7.3 Self-Assemblies of Amphiphilic C60 Derivatives

7.4 Gels of Fullerenes

7.5 Conclusions and Outlook

References

Chapter 8: Fullerene-Containing Supramolecular Polymers and Dendrimers

8.1 Introduction

8.2 Fabrication of [60]Fullerene Polymeric Array

8.3 Supramolecular Polymerization of Functionalized [60]Fullerene

8.4 Supramolecular [60]Fullerene Dendrimer

8.5 Conclusions

References

Chapter 9: [60]Fullerene-Containing Thermotropic Liquid Crystals

9.1 Introduction

9.2 Noncovalent C60 Derivatives

9.3 Covalent C60 Derivatives

9.4 Conclusions

Acknowledgments

References

Chapter 10: Supramolecular Chemistry of Fullerenes on Solid Surfaces

10.1 Introduction

10.2 Fullerenes on Nonpatterned Metal Surfaces

10.3 Surface Templates for Fullerene Adsorption

10.4 Supramolecular Aggregation of Fullerenes and other Organic Species on Surfaces

10.5 Outlook

Acknowledgments

References

Chapter 11: Supramolecular Chemistry of Carbon Nanotubes

11.1 Introduction

11.2 Supramolecular Carbon Nanotube Hybrids

11.3 Conclusions

References

Chapter 12: Supramolecular Chemistry of Fullerenes and Carbon Nanotubes at Interfaces: Toward Applications

12.1 Introduction

12.2 Fullerene Interfaces

12.3 Carbon Nanotubes

12.4 Conclusions

References

Chapter 13: Applications of Supramolecular Ensembles with Fullerenes and CNTs: Solar Cells and Transistors

13.1 Introduction

13.2 Solar Cells

13.3 Transistors

13.4 Summary

References

Chapter 14: Experimental Determination of Association Constants Involving Fullerenes

14.1 Planning a Titration Experiment

14.2 Performing a Titration

14.3 Choosing the Spectroscopic Method

14.4 Analyzing the Data

14.5 Determining Stoichiometry

14.6 Estimating Errors

14.7 Fullerenes as Guests: Spectroscopic Properties

14.8 Determination of the Binding Constant of an exTTF-based Host toward C60: A Practical Example

14.9 Conclusions

References

Index

Related Titles

Klauk, H. (ed.)
Organic Electronics II
More Materials and Applications
2012
ISBN: 978-3-527-32647-1

Siebbeles, L. D. A., Grozema, F. C. (eds.)
Charge and Exciton Transport
through Molecular Wires

2011
ISBN: 978-3-527-32501-6

Samori, P., Cacialli, F. (eds.)
Functional Supramolecular
Architectures
for Organic Electronics and
Nanotechnology

2011
ISBN: 978-3-527-32611-2

Guldi, D. M., Martín, N. (eds.)
Carbon Nanotubes and Related
Structures
Synthesis, Characterization,
Functionalization, and Applications

2010
ISBN: 978-3-527-32406-4

Martín, N., Giacalone, F. (eds.)
Fullerene Polymers
Synthesis, Properties and Applications

2009
ISBN: 978-3-527-32282-4

Cademartiri, L., Ozin, G. A.
Concepts of Nanochemistry
2009
ISBN: 978-3-527-32626-6

Steed, J. W., Atwood, J. L.
Supramolecular Chemistry
ISBN: 978-0-470-51234-0

Atwood, J. L., Steed, J. W. (eds.)
Organic Nanostructures
2008
ISBN: 978-3-527-31836-0

Diederich, F., Stang, P. J., Tykwinski, R. R. (eds.)
Modern Supramolecular Chemistry
Strategies for Macrocycle Synthesis

2008
ISBN: 978-3-527-31826-1

Title Page

Preface

Three great scientists, Jean-Marie Lehn, Donald J. Cram, and Charles J. Pedersen, received the Nobel Prize in Chemistry in 1987 for the development and utilization of molecules with highly selective structure-specific interactions. Only 2 years before, in 1985, fullerenes were discovered and, in 1996, Sir Harold W. Kroto, Robert F. Curl, and the late Richard E. Smalley were awarded the Nobel Prize in Chemistry for the discovery of these new carbon allotropes. Soon after this seminal finding, the discovery of multi- and single-wall carbon nanotubes (CNTs) in 1991 and 1993, respectively, provided a new kind of carbon allotropes with cylindrical geometry that belong structurally to the family of fullerenes. Although both areas of chemistry (supramolecular chemistry and fullerenes) have been thoroughly studied in the past two decades and very significant advances in terms of basic knowledge and practical applications have independently been made, more recently they gave rise to a new interdisciplinary field in which the imagination of chemists has afforded unprecedented fullerene-based supramolecular architectures.

This year we celebrate the 25th anniversary of the awarding of Nobel to those scientists who brought to the attention of the scientific community the new concept of supramolecular chemistry. Therefore, it is an excellent opportunity to comment on the most important achievements and future goals in this emerging field of supramolecular chemistry of fullerenes and carbon nanotubes.

The huge number of publications during the past decade devoted to fullerenes and supamolecular chemistry attest the interest in this new avenue of chemistry stemming from both fields. The use of concepts and principles of supramolecular chemistry to fullerenes and carbon nanotubes has reached an outstanding position in its own right and we certainly believe that it constitutes a new interdisciplinary field with basic research interest and important potential applications in fields such as biomedical and materials sciences.

Therefore, in this timely book containing 14 chapters, we have gathered the most important developments authored by leading scientists actively engaged in supramolecular/fullerene research, thus giving a precise picture on the state of the art in this new hybrid field.

One of the major challenges nowadays in chemistry is the control of weak forces, on a molecular basis, which will eventually lead to the definition of the size and shape in relation to function of the resulting supramolecular ensembles. In this regard, the rigid structure and round and rod shape of fullerenes and CNTs, respectively, as well as their remarkable electronic properties result in rather unique scaffolds for the development of unprecedented carbon-based nanoarchitectures. For these purposes, the different types of weak forces, namely, hydrogen bonding, π–π stacking, coordination of metal cations, electrostatic interactions, and solvophobic forces have been used in the different chapters to construct new noncovalently bonded structures. A singular aspect in the construction of new architectures involving these weak forces is that, in contrast to covalently bonded structures, they are reversible and their binding energies can be tailored “at will” by means of the chemical environment and temperature.

The book starts with the first chapter devoted to the general introduction to the field of fullerenes and CNTs emphasizing the main achievements in covalent and macromolecular chemistry. The following chapters are devoted to the main supramolecular topics such as H-bonded fullerene assemblies, receptors for pristine fullerenes based on concave–convex π–π interactions, cooperative effects on the self-assembly of fullerene–donor ensembles, fullerene-containing catenanes and rotaxanes, biomimetic motifs toward the construction of artificial reaction centers, supramolecular chemistry of fullerene-containing micelles and gels, fullerene-containing supramolecular polymers and dendrimers, fullerene-containing thermotropic liquid crystals, organizing fullerenes on solid surfaces with STM, supramolecular chemistry of fullerenes and carbon nanotubes at interfaces: toward the application of supramolecular ensembles with fullerenes and CNTs, solar cells and transistors, and supramolecular chemistry of carbon nanotubes. The last chapter is dedicated to the experimental determination of association constants involving fullerenes.

The guest editors want to express their gratitude to the many authors who have participated in this venture for their efforts to bring out this outstanding and unique book in which, for the first time, the supramolecular chemistry of the important carbon allotropes, fullerenes and CNTs, are brought together for the benefit of the reader.

We hope that this book on this new interdisciplinary field be a stimulus for young researchers and would put a new heart into other colleagues to develop new chemical concepts and molecular architectures in which imagination would be the only limitation.

Nazario Martín and Jean-François Nierengarten, editors

List of Contributors

Davide Bonifazi
University of Namur (FUNDP)
Department of Chemistry
Rue Bruxelles 61
5000 Namur
Belgium

University of Trieste
Department of Chemical and Pharmaceutical Sciences
Piazzale Europa 1
34127 Trieste
Italy

Stéphane Campidelli
CEA, IRAMIS
Laboratoire d'Electronique Moléculaire
CEA Saclay
91191 Gif sur Yvette Cedex
France

Robert Deschenaux
Université de Neuchâtel
Institut de Chimie
Laboratoire de Chimie Macromoléculaire
Avenue de Bellevaux 51
2000 Neuchâtel
Switzerland

Bertrand Donnio
Université de Strasbourg
UMR 7504 CNRS
Institut de Physique et Chimie des Matériaux de Strasbourg
23 Rue du Loess, BP43
67034 Strasbourg Cedex 2
France

Arianna Filoramo
CEA, IRAMIS
Laboratoire d'Electronique Moléculaire
CEA Saclay
91191 Gif sur Yvette Cedex
France

José María Gallego
Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia)
Cantoblanco
28049 Madrid
Spain

Consejo Superior de Investigaciones Científicas
Instituto de Ciencia de Materiales de Madrid
Cantoblanco
28049 Madrid
Spain

Francesco Giacalone
Università di Palermo
Department of Organic Chemistry
“E. Paternò”
90128 Palermo
Italy

Davide Giust
University of Castilla la Mancha
Department of Organic
Inorganic and Biochemistry
Av. da José Cela 10
13071 Ciudad Real
Spain

Bruno Grimm
Friedrich-Alexander-Universitaet Erlangen-Nuermberg
Interdisciplinary Center for Molecular Materials (ICMM)
Department of Chemistry and Pharmacy
Egerlandstr. 3
91058 Erlangen
Germany

Daniel Guillon
Université de Strasbourg
UMR 7504 CNRS
Institut de Physique et Chimie des Matériaux de Strasbourg
23 Rue du Loess, BP43
67034 Strasbourg Cedex 2
France

Dirk M. Guldi
Friedrich-Alexander-Universitaet Erlangen-Nuermberg
Interdisciplinary Center for Molecular Materials (ICMM)
Department of Chemistry and Pharmacy
Egerlandstr. 3
91058 Erlangen
Germany

Takeharu Haino
Hiroshima University
Graduate School of Science
Department of Chemistry
1-3-1 Kagamiyama
Higashi-Hiroshima City 739-8526
Japan

Ma Ángeles Herranz
Universidad Complutense de Madrid
Facultad de Ciencias Químicas
Departamento de Química Orgánica
28040 Madrid
Spain

Toshiaki Ikeda
Hiroshima University
Graduate School of Science
Department of Chemistry
1-3-1 Kagamiyama
Higashi-Hiroshima City 739-8526
Japan

Beatriz M. Illescas
Universidad Complutense de Madrid
Facultad de Ciencias Químicas
Departamento de Química Orgánica
28040 Madrid
Spain

Hiroshi Imahori
Kyoto University
Institute for Integrated Cell-Material Sciences (iCeMS)
Kyotodaigaku-katsura
Nishikyo-ku
Kyoto 615-8501
Japan

Kyoto University
Graduate School of Engineering
Department of Molecular Engineering
Nishikyo-ku
Kyoto 615-8501
Japan

Bruno Jousselme
CEA, IRAMIS
Laboratoire de Chimie des Surfaces
et Interfaces
CEA Saclay
91191 Gif sur Yvette Cedex
France

Takeshi Kawase
University of Hyogo
Graduate School of Engineering
Department of Materials Science and Chemistry
Shosha 2167
Himeji
Hyogo 671-2280
Japan

Adrian Kremer
University of Namur (FUNDP)
Department of Chemistry
Rue Bruxelles 61
5000 Namur
Belgium

Hongguang Li
Max Planck Institute of Colloids and Interfaces
Department of Interfaces
MPI-NIMS International Joint Laboratory
Am Mühlenberg 1
14476 Potsdam
Germany

Riccardo Marega
University of Namur (FUNDP)
Department of Chemistry
Rue Bruxelles 61
5000 Namur
Belgium

Nazario Martín
Universidad Complutense de Madrid
Facultad de Ciencias Químicas
Departamento de Química Orgánica
28040 Madrid
Spain

Universidad Autónoma de Madrid
Facultad de Ciencias
IMDEA-Nanociencia
Ciudad Universitaria de Cantoblanco
Módulo C-IX, 3a Planta
28049 Madrid
Spain

Aurelio Mateo-Alonso
Albert-Ludwigs-Universität Freiburg
Freiburg Institute for Advanced Studies (FRIAS)
School of Soft Matter Research
Albertstrasse 19
79104 Freiburg im Breisgau
Germany

Albert-Ludwigs-Universität Freiburg
Institut für Organische Chemie und Biochemie
Albertstrasse 21
79104 Freiburg im Breisgau
Germany

Rodolfo Miranda
Universidad Autónoma de Madrid
Departamento de Física de la Materia Condensada
Cantoblanco
28049 Madrid
Spain

Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia)
Cantoblanco
28049 Madrid
Spain

Takashi Nakanishi
National Institute for Materials Science (NIMS)
Organic Materials Group
1-2-1 Sengen
Tsukuba 305-0047
Japan

Jean-François Nierengarten
Université Louis Pasteur et CNRS (UMR 7509)
Ecole Européenne de Chimie
Polymères et Matériaux (ECPM)
Laboratoire de Chimie des Matériaux Moléculaires
25 rue Becquerel
67087 Strasbourg Cedex 2
France

Roberto Otero
Universidad Autónoma de Madrid
Departamento de Física de la Materia Condensada
Cantoblanco
28049 Madrid
Spain

Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia)
Cantoblanco
28049 Madrid
Spain

Emilio M. Pérez
IMDEA Nanociencia
Campus Universitario de Cantoblanco
Facultad de Ciencias Módulo C-IX, 3a planta
28049 Madrid
Spain

Luis Sánchez
Universidad Complutense de Madrid
Facultad de Ciencias Químicas
Departamento de Química Orgánica
28040 Madrid
Spain

Sukumaran Santhosh Babu
National Institute for Materials Science (NIMS)
Organic Materials Group
1-2-1 Sengen
Tsukuba 305-0047
Japan

Max Planck Institute of Colloids and Interfaces
Department of Interfaces
MPI-NIMS International Joint Laboratory
Am Mühlenberg 1
14476 Potsdam
Germany

José Santos
Universidad Complutense de Madrid
Facultad de Ciencias Químicas
Departamento de Química Orgánica
28040 Madrid
Spain

Tomokazu Umeyama
Kyoto University
Graduate School of Engineering
Department of Molecular Engineering
Nishikyo-ku
Kyoto 615-8501
Japan